Dependence of kinetic friction on velocity: master equation approach.

نویسندگان

  • O M Braun
  • M Peyrard
چکیده

We investigate the velocity dependence of kinetic friction with a model that makes minimal assumptions on the actual mechanism of friction so that it can be applied at many scales, provided the system involves multicontact friction. Using a recently developed master equation approach, we investigate the influence of two concurrent processes. First, at a nonzero temperature, thermal fluctuations allow an activated breaking of contacts that are still below the threshold. As a result, the friction force monotonically increases with velocity. Second, the aging of contacts leads to a decrease of the friction force with velocity. Aging effects include two aspects: the delay in contact formation and aging of a contact itself, i.e., the change of its characteristics with the duration of stationary contact. All these processes are considered simultaneously with the master equation approach, giving a complete dependence of the kinetic friction force on the driving velocity and system temperature, provided the interface parameters are known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic boundary friction

It is shown that the exhibition of smooth sliding and relaxation oscillations, or 4 stick-slips under conditions of boundary lubrication, when frictional forces are measured by the deflexion of an elastic system, may be explained as due to the dependence of kinetic friction on velocity. In the cases giving smooth sliding, kinetic friction decreases as velocity decreases, at very low speeds; for...

متن کامل

Atomic simulations of kinetic friction and its velocity dependence at Al/Al and -Al2O3/ -Al2O3 interfaces

Kinetic friction during dry sliding along atomistic-scale Al 001 /Al 001 and -Al2O3 0001 / -Al2O3 0001 interfaces has been investigated using molecular dynamics MD with recently developed Reactive Force Fields ReaxFF . It is of interest to determine if kinetic friction variations predicted with MD follow the macroscopic-scale friction laws known as Coulomb’s law for dry sliding and Stokes’ fric...

متن کامل

Binding site models of friction due to the formation and rupture of bonds: state-function formalism, force-velocity relations, response to slip velocity transients, and slip stability.

We present a model describing friction due to the thermally activated formation and rupture of molecular bonds between two surfaces, with long molecules on one surface attaching to discrete or continuous binding sites on the other. The physical assumptions underlying this model are formalized using a continuum approximation resulting in a class of master-equation-like partial differential equat...

متن کامل

On the master equation approach: linear and nonlinear Fokker–Planck equations

We discuss the relationship between kinetic equations of the Fokker-Planck type (two linear and one non-linear) and the Kolmogorov (a.k.a. master) equations of certain N -body diffusion processes, in the context of Kac’s propagation-of-chaos limit. The linear Fokker-Planck equations are well-known, but here they are derived as a limit N → ∞ of a simple linear diffusion equation on 3N − C-dimens...

متن کامل

Reinterpretation of velocity-dependent atomic friction: influence of the inherent instrumental noise in friction force microscopes.

We have applied both the master equation method and harmonic transition state theory to interpret the velocity-dependent friction behavior observed in atomic friction experiments. To understand the discrepancy between attempt frequencies measured in atomic force microscopy experiments and those estimated by theoretical models, both thermal noise and instrumental noise are introduced into the mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 83 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011